The classifying Lie algebroid of a geometric structure II: G-structures with connection
نویسندگان
چکیده
Given a G-structure with connection satisfying regularity assumption we associate to it classifying Lie algebroid. This algebroid contains all the information about equivalence problem and is an example of We discuss properties this algebroid, groupoids integrating relationship Cartan’s realization problem.
منابع مشابه
investigating the feasibility of a proposed model for geometric design of deployable arch structures
deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...
Geometric structures encoded in the Lie structure of an Atiyah algebroid
We investigate Atiyah algebroids, i.e. the infinitesimal objects of principal bundles, from the viewpoint of Lie algebraic approach to space. First we show that if the Lie algebras of smooth sections of two Atiyah algebroids are isomorphic, then the corresponding base manifolds are necessarily diffeomorphic. Further, we give two characterizations of the isomorphisms of the Lie algebras of secti...
متن کاملCurvature collineations on Lie algebroid structure
Considering prolongation of a Lie algebroid equipped with a spray, defining some classical tensors, we show that a Lie symmetry of a spray is a curvature collineation for these tensors.
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولThe Lie Algebra of a Lie Algebroid
We present results describing Lie ideals and maximal finite-codimensional Lie subalgebras of the Lie algebras associated with Lie algebroids with non-singular anchor maps. We also prove that every isomorphism of such Lie algebras induces diffeomorphism of base manifolds respecting the generalized foliations defined by the anchor maps.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The São Paulo Journal of Mathematical Sciences
سال: 2021
ISSN: ['2316-9028', '1982-6907']
DOI: https://doi.org/10.1007/s40863-021-00272-x